首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2299篇
  免费   439篇
  国内免费   159篇
测绘学   225篇
大气科学   166篇
地球物理   1045篇
地质学   758篇
海洋学   116篇
天文学   10篇
综合类   107篇
自然地理   470篇
  2024年   2篇
  2023年   10篇
  2022年   39篇
  2021年   85篇
  2020年   90篇
  2019年   73篇
  2018年   82篇
  2017年   129篇
  2016年   111篇
  2015年   111篇
  2014年   140篇
  2013年   234篇
  2012年   133篇
  2011年   158篇
  2010年   126篇
  2009年   117篇
  2008年   143篇
  2007年   172篇
  2006年   135篇
  2005年   97篇
  2004年   94篇
  2003年   87篇
  2002年   87篇
  2001年   73篇
  2000年   55篇
  1999年   49篇
  1998年   28篇
  1997年   34篇
  1996年   26篇
  1995年   30篇
  1994年   23篇
  1993年   18篇
  1992年   15篇
  1991年   12篇
  1990年   17篇
  1989年   10篇
  1988年   16篇
  1987年   11篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2897条查询结果,搜索用时 15 毫秒
71.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
73.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   
74.
Hou  Wenjuan  Gao  Jiangbo 《地理学报(英文版)》2019,29(3):432-448
Journal of Geographical Sciences - Runoff generation is an important part of water retention service, and also plays an important role on soil and water retention. Under the background of the...  相似文献   
75.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
76.
土壤粒径的光谱响应特性研究   总被引:1,自引:0,他引:1  
以实验室制备的5个不同粒径水平的土壤样本和室内高光谱数据为基础,通过对光谱数据进行重采样、数学变换等预处理并进行单因素方差分析、相关性分析和回归分析,探讨土壤粒径的高光谱特性,建立了光谱数据预测土壤粒径的校正模型。结果表明,土壤粒径对反射光谱有显著的影响,波长越长影响越大;在全波段范围内土壤粒径和光谱数据都呈负相关关系,对原始光谱数据进行微分变换能增加其与土壤粒径的相关性;以反射率一阶微分建立的回归模型为反演土壤粒径的最佳模型,其建模决定系数■、预测决定系数■、预测相对偏差RPD分别为0.666,0.653,2.043,预测均方根误差RMSE为0.175。  相似文献   
77.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
78.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
79.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
80.
鄂西岩溶槽谷区洼地的水位响应特征及产流阈值估算   总被引:1,自引:0,他引:1  
廖春来  罗明明  周宏 《中国岩溶》2020,39(6):802-809
以湖北省兴山县黄粮镇刘家坝和龙湾两处岩溶洼地作为研究对象,利用其降雨、水文和土壤水等监测数据,探讨灌入式补给条件下洼地汇流的水位响应特征和产流特点,并基于降雨量和洼地内明渠流量的关系,采用数学拟合方程,估算两处洼地的降雨产流阈值,进而分析了影响产流阈值的因素。结果表明:降雨强度增大,产流阈值减小;土壤前期含水率越大,越有利于坡面产流;落水洞和岩溶泉水位与降雨有较好的同步响应关系,水位变化曲线随雨强大小分别表现出“陡升陡降”和“缓升缓降”的特点;刘家坝和龙湾洼地的产流阈值分别为7.4 mm和10.6 mm。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号